
INSTRUCTIONS FOR THE ONLINE FINAL ICL EVALUATION

Dear all,

The final test 24 Jan 2022 will be online.

By 17:00 we will start the final evaluation session, to end by 18:30.

A zoom session will be opened at 16:45 (15m before) at the usual zoom link
for ICL lectures.

After that, I will open a (google) form that you will need to fill and submit.

The URL for the form will be sent to you in the zoom chatbox.

The form will only contain blank fields for you to write down our answers, the
questions will be available in separate PDF file, uploaded to the CLIP before
the test starts.

Note that your required answer depends on the parity of your student number.

https://docs.google.com/forms/d/e/1FAIpQLSe1k514O_7UJv-u0ucd_56WGPY2Fo4vaJTqsfuAZegyBzPymg/viewform	

To access the form you will need to authenticate with your official student FCT
NOVA email (---@campus.fct.unl.pt), which will be recorded in the form.

You may edit and re-submit your form as many times as you wish until the
end of the test.

During the evaluation session, I will answer questions on the zoom chat.

You may use and consult any materials you want, but you should avoid
that: it is not needed, and you would better use well your available time.

Thanks, all the best,

Luis Caires
	 	

Interpretation	and	Compilation		/	MIEI	/	FCT	NOVA		
	
	

ONLINE	Final	Test	2021	
	
	
The	C	language	offers	post-increment	and	pre-increment	operations,	noted	E++	
and	++E	respectively,	where	E	is	any	expression	denoting	a	memory	cell.			
	
As	you	know,	in	our	ICL	language,	memory	cells	are	represented	by	references,	
so	it	would	make	sense	to	add	these	post-	and	pre-increment	operations	to	it.		
	
The	effect	of	evaluating	E++	is	to	return	the	contents	of	the	reference	cell	
denoted	by	E,	and	increment	the	contents	by	1	(the	value	returned	is	the	content	
of	the	cell	before	incrementing).	
	
The	effect	of	evaluating	++E	is	to	increment	by	1		the	contents	of	the	memory	cell	
denoted	by	E	and	then	return	the	new	value	(the	value	returned	is	the	content	of	
the	cell	after	incrementing).	
	
Notice	that	both	++E	and	E++	do	an	implicit	dereference	of	E	(that	is,	both	++E	
and	E++	return	an	integer).	
	
For	example,	consider	the	programs	
		
def i = ref 0 in def i = ref 0 in
 while (i++ < 100) do while (++i < 100) do
 println !i println !i
 end end
end;; end;;
	
the	red	program	(left)	prints	all	integers	from	1	to	100,	the	blue	program	
(right)	prints	all	integers	from	1	to	99.
	
In	both	cases	E++	and	++E,	the	expression	E	must	evaluate	to	a	reference	cell	
holding	an	integer,	otherwise	the	expressions	E++	and	++E	have	a	type	error.	
	
ONE.		
	
Define	the	Java	AST	class	to	represent	the	E++	(if	your	student	number	is	odd)	or	
++E	(if	your	student	number	is	even)	expression,	including	its	interpreter	eval	
method,	which	should	have	the	signature	
	
 IValue eval(Env<IValue> e) throws Exception
	
Your	eval	method	must	implement	some	dynamic	type	checking,	issuing	a	
runtime	type	exception	if	needed.	
	
Note:	Here	IValue	is	the	Java	interface	type	that	denotes	language	values	in	the	
interpreter	and	Env<IValue>	is	the	Java	class	for	the	interpreter	environment.	

	
TWO.		Consider	now	the	implementation	of	a	compiler	for	the	language	with	E++	
or	++E.	
	
Considering	the	programs	above	,	write	down	the	JVM	code	that	should	be	
generated	for	the	red	program	above	on	the	left	(if	your	student	number	is	odd)	
or	for	the	blue	program	above	on	the	right	(if	your	student	number	is	even).		
	
Use	Jasmin	notation	for	the	JVM	assembly	code.	
	
THREE.			
	
A	compiler	covering	the	expression	forms	E++	or	++E	must	implement	a	
typechecker,	in	order	to	generate	correct	code.	
	
Write	down	the	typecheck	method	for	E++	(if	your	student	number	is	odd)	or	for	
++E	(if	your	student	number	is	even).			
	
The	signature	should	be	something	like:
	

IType typecheck(Env<IType> e) throws Exception
	
Your	implementation	should	issue	a	static	type	checking	exception	if	needed.	
	
FOUR.			
	
Write	down	the	compile	method	for	E++	(if	your	student	number	is	odd)	or	for	
++E	(if	your	student	number	is	even).		
	
The	signature	should	be	something	like:
	

void compile(CodeBlock c, Env<Coord> e)
	
NOTES:	
	
You	may	consult	whatever	material	you	want.	
	
GOOD	WORK!	
	

